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Phylogenetic Trees

Lemur	catta A A G C T T C A T A G G A G C A A C C A T T C T A A T A A T C G C A C A T G G C C T T A C A T C A T

Saimiri	sciureus A A G C T T C A C C G G C G C A A T G A T C C T A A T A A T C G C T C A C G G G T T T A C T T C G T

M	sylvanus A A G C T T C T C C G G T G C A A C T A T C C T T A T A G T T G C C C A T G G A C T C A C C T C T T

M	fascicularis A A G C T T C T C C G G C G C A A C C A C C C T T A T A A T C G C C C A C G G G C T C A C C T C T T

M	mulatta A A G C T T T T C T G G C G C A A C C A T C C T C A T G A T T G C T C A C G G A C T C A C C T C T T

Macaca	fuscata A A G C T T T T C C G G C G C A A C C A T C C T T A T G A T C G C T C A C G G A C T C A C C T C T T

Hylobates A A G C T T T A C A G G T G C A A C C G T C C T C A T A A T C G C C C A C G G A C T A A C C T C T T

Pongo A A G C T T C A C C G G C G C A A C C A C C C T C A T G A T T G C C C A T G G A C T C A C A T C C T

Gorilla A A G C T T C A C C G G C G C A G T T G T T C T T A T A A T T G C C C A C G G A C T T A C A T C A T

Pan A A G C T T C A C C G G C G C A A T T A T C C T C A T A A T C G C C C A C G G A C T T A C A T C C T

Human A A G C T T C A C C G G C G C A G T C A T T C T C A T A A T C G C C C A C G G G C T T A C A T C C T

Tarsius	syrichta A A G T T T C A T T G G A G C C A C C A C T C T T A T A A T T G C C C A T G G C C T C A C C T C C T

1



Phylogenetic Trees

Leaf nodes ⇐⇒ Observed species

Internal nodes ⇐⇒ Unobserved ancestor species

Branch length ⇐⇒ Evolutionary time between two species

• A phylogenetic tree is described by a bifurcating tree topology τ and the associated

non-negative branch lengths q.

• Y = {Y1, . . . , YN} ∈ ΩN×M are the observed sequences (with characters in Ω) of

length M over N species. (e.g. Ω = {A,C,G, T} contain the nucleotides.)
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Phylogenetic Trees

[Felsenstein, 2004]

P (Y |τ, q) follows a continuous-time Markov chain

• Y ’s are leaf nodes and X’s are internal nodes.

Y1

Y2

Y3

Y4

X5

X6

X7

P (Y |τ, q) =

∑
X P (Y1, Y2|X5)P (Y3, Y4|X6)P (X5, X6|X7)η(X7)
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Bayesian Phylogenetic Inference

• The core question in phylogenetic inference is:

Given the biological sequences Y of observed species, what are the

underlying phylogenetic trees?

• Now, in a Bayesian framework: (i) The likelihood function is P (Y |τ, q). (ii) The

assumed prior distribution is P (τ, q).

Then the above question turns into:

How can we infer the posterior distribution:

P (τ, q|Y ) =
P (Y |τ, q)P (τ, q)

p(Y )
∝ P (Y |τ, q)P (τ, q)

4



Bayesian Phylogenetic Inference

• The core question in phylogenetic inference is:

Given the biological sequences Y of observed species, what are the

underlying phylogenetic trees?

• Now, in a Bayesian framework: (i) The likelihood function is P (Y |τ, q). (ii) The

assumed prior distribution is P (τ, q).

Then the above question turns into:

How can we infer the posterior distribution:

P (τ, q|Y ) =
P (Y |τ, q)P (τ, q)

p(Y )
∝ P (Y |τ, q)P (τ, q)

4



Bayesian Phylogenetic Inference

• The core question in phylogenetic inference is:

Given the biological sequences Y of observed species, what are the

underlying phylogenetic trees?

• Now, in a Bayesian framework: (i) The likelihood function is P (Y |τ, q). (ii) The

assumed prior distribution is P (τ, q).

Then the above question turns into:

How can we infer the posterior distribution:

P (τ, q|Y ) =
P (Y |τ, q)P (τ, q)

p(Y )
∝ P (Y |τ, q)P (τ, q)

4



Variational Inference

P(θ |X) Qϕ(θ)minimize

ϕ∗ = argmin
ϕ

KL (Qϕ(θ)∥P (θ|X))

= argmax
ϕ

Eθ∼Qϕ(θ) log

(
P (X|θ)P (θ)

Qϕ(θ)

)

Variational inference (VI) [Blei et al., 2017] turns inference into optimization:

• Specify a variational family {Qϕ(θ)}ϕ∈Φ over the model latent variables.

• Find the optimal variational approximate distribution Qϕ∗(θ) by minimizing the KL

divergence or maximizing the evidence lower bound (ELBO).
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Variational Bayesian Phylogenetic Inference

[Zhang and Matsen IV, 2019]

• Challenges for Bayesian phylogenetic inference:

• Combinatorially explosive size ((2n− 5)!!) of the tree topology space.

• The composite structure of discrete (tree topology) and continuous (branch length)

components

• Variational family:

Qϕ,ψ(τ, q) =
branch length

Qψ(q|τ) ·
tree topology

Qϕ(τ)

• Multi-sample lower bound:

LK(ϕ,ψ) = E
{(τ i,qi)}Ki=1

i.i.d.∼ Qϕ,ψ
log

(
1

K

K∑
i=1

P (Y |τ i, qi)P (τ i, qi)

Qϕ(τ i)Qψ(qi|τ i)

)
. (1)
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Variational Bayesian Phylogenetic Inference

• Variational Bayesian Phylogenetic Inference (VBPI) is done by maximizing the lower

bound (1), i.e.

ϕ∗,ψ∗ = argmax
ϕ,ψ

LK(ϕ,ψ)

• Choices of tree topology model Qϕ(τ) (focus of this talk):

• Subsplit Bayesian Networks (SBNs) [Zhang and Matsen IV, 2018].

• ARTree (proposed in this paper) [Xie and Zhang, 2023].

• Choices of branch model Qψ(q|τ):
• Normalizing Flows [Zhang et al., 2020].

• Graph Neural Networks [Zhang, 2023].
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Subsplit Bayesian Networks
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• The basic idea of subsplit Bayesian networks (SBNs) is to decompose the tree into local

structures via Bayesian networks [Zhang and Matsen IV, 2018].

• The SBN-based probability of this tree topology is

Psbn(T = τ) = P (S1)P (S2|S1)P (S3|S1)P (S4|S2)P (S5|S2)P (S6|S7)P (S7|S3)

8
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Subsplit Bayesian Networks

• SBNs parametrization: conditional probabilities of subsplit pairs.

• Practical compromise: subsplit support estimation, e.g. samples from an MCMC run.

• Therefore, SBNs suffer from the following drawbacks [Zhang and Matsen IV, 2022]:

• Not standing alone: SBNs rely on hand-engineered heuristic features which would require

pre-sampled tree topologies.

• Hard support estimation: The subsplit support estimation may become challenging when

the phylogenetic posterior is diffuse.

• Confined support: the support of SBNs cannot span the entire tree topology space.
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ARTree: Overview

• We propose ARTree, a deep autoregressive model for phylogenetic inference enjoys:

• Unconstrained support;

• Discarding heuristic features.

• Notations:

• τn = (Vn, En): tree topology with n leaf nodes

• Vn, En: nodes and edges of τn.

• X = {x1, . . . , xN}: a pre-selected order for the leaf nodes.

• We consider unrooted tree topologies in ARTree. (But ARTree can be easily adapted to

rooted tree topologies.)
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ARTree: Sequential Generating Process

Construction of ordinal tree topology:

x1
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ARTree: Sequential Generating Process

• The sequential generating process for phylogenetic tree topologies. Starting from an
ordinal tree topology τn = (Vn, En), we:

1. select an edge en = (u, v) ∈ En and remove it from En;

2. add a new node w and two new edges (u,w), (w, v) to the tree topology;

3. add the leaf node xn+1 and an edge (w, xn+1) to the tree topology.

Then we obtained an ordinal tree topology τn+1 = (Vn+1, En+1).

• During the generating process, the selected edges at each time step form a decision

sequence D = (e3, . . . , eN−1).

Theorem (Generating process is bijective)

Let D = {D|D = (e3, . . . , eN−1)} be the set of all decision sequences and T be the set of

all ordinal tree topologies. Let the map g : D → T be the generating process described

above. Then g is a bijection between D and T .
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ARTree: Sequential Generating Process

• By this theorem, for each tree topology τ ∈ T , there is a unique decision sequence given

by g−1(τ). We call g−1 decomposition process.

Lemma

The time complexity of the decomposition process induced by g−1(·) is O(N).

• Decompose Q(D) as the product of conditional distributions:

Q(τ) = Q(D) =

N−1∏
n=3

Q(en|e3, . . . , en−1). (2)

• The Q(en|e<n) defines the probability of adding the leaf node xn+1 to the edge en of

τn, conditioned on all (τ3, . . . , τn) generated so far.

• We will show how to parametrize Q(en|e<n) using graph neural networks (GNNs).
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ARTree: Graph Neural Networks

Figure 5.1 in [Hamilton, 2020]

A general framework of graph neural networks (GNNs):

• (The first step) Initialize the node features.

• Aggregate the information from the neighborhood; Update the node features.

• (The last step) Readout the node features.
14



ARTree: Graph Neural Networks

Topological node embeddings

• First find the node embeddings of τn = (Vn, En), which is a set {fn(u) ∈ RN : u ∈ Vn}.

• For leaf nodes, one-hot encoding :

[fn(xi)]j = δij , 1 ≤ i ≤ n, 1 ≤ j ≤ N,

where δ is Kronecker delta function.

• For interior nodes, minimizing the Dirichlet energy

ℓ(fn, τn) :=
∑

(u,v)∈En

||fn(u)− fn(v)||2

using the efficient two-pass algorithm described in [Zhang, 2023].
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ARTree: Graph Neural Networks

Message passing networks

• Initialized as topological node embeddings, the node features are updated with the

information from their neighborhoods in a convolutional manner [Gilmer et al., 2017].

• l-th round message passing (L round in total):

ml
n(u, v) = F l

message(f
l
n(u), f

l
n(v)),

f l+1
n (v) = F l

updating

(
{ml

n(u, v);u ∈ N (v)}
)
,

where N (v) is the neighborhood of the node v.

• In our implementations, the choices of F l
message and F l

updating follow the edge

convolution operator [Wang et al., 2018].
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ARTree: Graph Neural Networks

Node hidden states

• The conditional distribution Q(·|e<n) has to capture the information from all the

previous tree topologies.

• After obtaining the final node features of {fL
n (v)}, a gated recurrent unit (GRU)

[Cho et al., 2014] follows, i.e.

hn(v) = GRU(hn−1(v), f
L
n (v)),

where hn(v) is the hidden state of v at the n-th generation step and is initialized to zero.
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ARTree: Graph Neural Networks

Time Guided Readout

• A main difference from other graph autoregressive models: the topological node

embedding f0
n(v) depends the time step n.

• Time guided readout step:

pn(e) = Fpooling (hn(u) + bn, hn(v) + bn) ,

rn(e) = Freadout (pn(e) + bn) ,

where bn is the sinusoidal positional embedding [Vaswani et al., 2017] of time step n.

• Edge decision probability:

Q(·|e<n) ∼ Discrete (qn) , qn = softmax ({rn(e)}e∈En) ,
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ARTree: Overview
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Experiments: Tree Topology Density Estimation
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Given a training data set M = {τm}Mm=1, we train ARTree via maximum likelihood estimation. In each

iteration, the stochastic gradient is obtained by ∇ϕL(ϕ;M) = 1
B

∑B
b=1 ∇ϕ logQϕ(τmb), where a minibatch

{τmb}
B
b=1 is randomly sampled from M.
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Experiments: Tree Topology Density Estimation

Table 1: KL divergences to the ground truth of different methods across 8 benchmark data sets.

Sampled trees column shows the numbers of unique tree topologies in the training sets formed by

MrBayes runs. The results are averaged over 10 replicates.

Data set #Taxa #Sites Sampled trees
KL divergence to ground truth

SBN-EM SBN-EM-α SBN-SGA ARTree

DS1 27 1949 1228 0.0136 0.0130 0.0504 0.0045

DS2 29 2520 7 0.0199 0.0128 0.0118 0.0097

DS3 36 1812 43 0.1243 0.0882 0.0922 0.0548

DS4 41 1137 828 0.0763 0.0637 0.0739 0.0299

DS5 50 378 33752 0.8599 0.8218 0.8044 0.6266

DS6 50 1133 35407 0.3016 0.2786 0.2674 0.2360

DS7 59 1824 1125 0.0483 0.0399 0.0301 0.0191

DS8 64 1008 3067 0.1415 0.1236 0.1177 0.0741
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Experiments: Variational Bayesian Phylogenetic Inference

For both ARTree and SBN, the collaborative branch lengths are parametrized using learnable topological

features with GNNs [Zhang, 2023]. VBPI is done by maximizing the multi-sample lower bound with K = 10.
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Results: VBPI on DS1. Left: The number of particles K are in the brackets. The ARTree∗ method refers to

ARTree without time guidance (bn = 0). Right: KL divergences across 50 random taxa orders. 22



Experiments: Variational Bayesian Phylogenetic Inference

Table 2: Results: VBPI on 8 benchmarks (KL, ELBO, 10-sample lower bound (LB-10), and marginal

likelihood (ML)). GT trees row shows the number of unique tree topologies in the ground truth. The

ML estimates are obtained via importance sampling using 1000 samples. The results of ϕ-CSMC are

from [Koptagel et al., 2022].

Data set DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

# Taxa 27 29 36 41 50 50 59 64

# Sites 1949 2520 1812 1137 378 1133 1824 1008

GT trees 2784 42 351 11505 1516877 809765 11525 82162

SBN 0.0707 0.0144 0.0554 0.0739 1.2472 0.3795 0.1531 0.3173

K
L

ARTree 0.0097 0.0004 0.0064 0.0219 0.8979 0.2216 0.0123 0.1231

SBN -7110.24(0.03) -26368.88(0.03) -33736.22(0.02) -13331.83(0.03) -8217.80(0.04) -6728.65(0.06) -37334.85(0.04) -8655.05(0.05)

ARTree -7110.09(0.04) -26368.78(0.07) -33736.17(0.08) -13331.82(0.05) -8217.68(0.04) -6728.65(0.06) -37334.84(0.13) -8655.03(0.05)E
L
B
O

SBN -7108.69(0.02) -26367.87(0.02) -33735.26(0.02) -13330.29(0.02) -8215.42(0.04) -6725.33(0.04) -37332.58(0.03) -8651.78(0.04)

ARTree -7108.68(0.02) -26367.86(0.02) -33735.25(0.02) -13330.27(0.03) -8215.34(0.03) -6725.33(0.04) -37332.54(0.03) -8651.73(0.04)L
B
-1
0

ϕ-CSMC -7290.36(7.23) -30568.49(31.34) -33798.06(6.62) -13582.24(35.08) -8367.51(8.87) -7013.83(16.99) N/A -9209.18(18.03)

SBN -7108.41(0.15) -26367.71(0.08) -33735.09(0.09) -13329.94(0.20) -8214.62(0.40) -6724.37(0.43) -37331.97(0.28) -8650.64(0.50)M
L

ARTree -7108.41(0.19) -26367.71(0.07) -33735.09(0.09) -13329.94(0.17) -8214.59(0.34) -6724.37(0.46) -37331.95(0.27) -8650.61(0.48)
23
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Thank you!
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Backup: Subsplit Bayesian Networks

• For a general rooted tree topology τ with subsplit assignments {si}i≥1, its SBN-based

probability is

Psbn(T = τ) = p(S1 = s1)
∏
i>1

p(Si = si|Sπi = sπi),

where πi is the index set of the parents of node i.

• For an unrooted tree topology τu,

Psbn(T = τu) =
∑

τ∈R(τu)

Psbn(T = τ),

where R(τu) is the resulting tree topologies by adding a root to an edge of τu.
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Backup: Subsplit Bayesian Networks

A B

C D

1 2

4 5

3

A

B

C

D

1

roo
t/u

nro
ot

A

B

C

D

3

root/unroot

A

A

B

C

D

A

B

CD

A

BCD

A

B

C

D

A

B

C

D

AB

CD

S4

S5

S6

S7

S2

S3

S1

For an unrooted tree topology τu,
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∑
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Psbn(T = τ),

where R(τu) is the resulting tree topologies by adding a root to an edge of τu.
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